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Inviscid transonic flows containing either strong shock waves or complex vortex 
structure call for the Euler equations as a realistic model. We present here a 
computational procedure, termed WINGA2, for solving the Euler equations for 
transonic flow around aircraft upon a 0-0 mesh generated by transfinite interpolation. 
An explicit time-marching finite-volume technique solves the flow equations and 
features a non-reflecting far-field boundary condition and an internal mechanism for 
temporal damping together with a model for artificial viscosity. The method’s 
convergence to a steady state is studied, and results computed on the CYBER 205 
vector processor are presented. The Euler equation model is found to predict the 
existence of a tip vortex created by flow separating from the downstream region of 
the tip of the ONERA M6 wing where the radius of curvature approaches zero. 

1. Introduction 
The great majority of inviscid compressible flows being simulated by computational 

methods for aerodynamic applications are steady. The standard model is the full 
potential equation and has proved to be a helpful tool in the design of aircraft. 
Difficulties arise, however, when discontinuities appear in the flow. Shock waves 
captured in this model agree with the Rankine-Hugoniot relations only if their 
strength is relatively weak, and vortex sheets cannot be captured a t  all but must be 
fitted, which in three dimensions is cumbersome except for simple situations. In  these 
cases the Euler equations are a better model, because Rankine-Hugoniot shocks are 
captured correctly regardless of their strength. But, more importantly, vortex sheets 
and vorticity can also be captured as weak and genuine solutions. However, in the 
absence of any extra procedure to introduce it explicitly, the way vorticity is 
generated by this inviscid model remains to be explained conclusively. A number of 
hypotheses have been advanced so far, and we discuss two of them here which focus 
on an irreversible process, either physical or numerical, localized at the trailing edge. 
The development of numerical methods to solve the Euler equations is an active field 
right now ; and some three-dimensional results have already been reported (Jameson 
& Baker 1984; Koeck & Neron 1984; Rizzi 1982). The applications of these methods 
range from the study of flow fields around military aircraft and missiles where shock 
waves are strong, to more complex non-uniform shear flows past wings, for example 
flow containing the slipstream of a propeller over a rectangular wing or the vorticity 
shed from a canard ahead of a delta wing (Erikson & Rizzi 1984). 

In  order to adapt readily to a general body-fitted grid we formulate the numerical 
method to solve the Euler equations in the integral-equation form or so-called 
finite-volume approach using centred second-order-accurate space differences. Topo- 
logy of the boundaries is discussed, numerical implementations of boundary 
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conditions are developed, and a model for artificial viscosity is introduced. We are 
interested here only in steady flow, and true time accuracy is of no concern. But it 
is convenient to use the time variable as an iteration path to the steady state, 
sometimes referred to as a pseudo-unsteady approach. This then makes it natural 
to study the convergence of the iteration to steady state by the so-called semidiscrete 
analysis, namely investigation of the system of ordinary differential equations that 
results when all the spatial derivatives are replaced by differences but the time 
variable remains continuous. This system of course has to be solved for discrete 
time - the fully discrete problem - and we present a scheme for the time integration 
that'is temporally dissipative and whose solution, once it reaches a steady state, 
satisfies the original steady difference operator exactly. The method is demonstrated 
with the computation of transonic flow past the M6 wing. 

2. Euler equations for compressible flow 
Continuum equations 

Representing the conservation of mass and momentum in any arbitrary volume B 
of space, the Euler equations of motion in integral form are 

a 9 d v o l +  H - n d s  = 0, %s, Is;, 
where the dependent variables 9 = [p, pu, pv, pw] comprise a column vector 
containing as elements the density and rectangular components of momentum 
referred to a Cartesian system (x, y ,  x )  fixed in space. The velocity of the fluid is 

V = ue,+ve,+we,. 

The quantity H(q) n = [ q V +  (0, e,, e2/, e,) p l a n  represents the net flux of 9 trans- 
ported across, plus the pressure p acting on, the closed surface 852 that  bounds the 
volume D with unit normal n. We only treat flows with a globally constant stagnation 
enthalpy h,, so that for a perfect gas the Bernoulli equationp = $ ~ p ( 2 h ,  - u2 - v2 - w2), 
where K = (y-  i) /y,  completes system (1) .  

Dividing by 52 and then shrinking 52 to a point leads to the differential conservation 
law valid a t  that point if the partial derivatives are continuous there. Conceptually, 
however, we find it more appealing to discretize the finite-domain integral system 
(1) directly, the so-called finite-volume approach (Rizzi 19Sl), since the integral law 
formally does not exclude discontinuities from the interior of B. Our method therefore 
is a cell concept rather than a grid-point concept. The integral approach may be 
important for the correct capturing of discontinuities in the flow. It also lends itself 
to an obvious geometrical interpretation between the dependent and independent 
variables in the physical space and their counterparts in the computational space 
which makes the use of any arbitrary coordinate system more readily comprehensible. 

Coordinate geometry 
Perhaps the most attractive feature of the integral approach is its readiness to 
accommodate any type of coordinate system. Any convenient grid-generation 
technique can be used simply to pack a grid of cells in an orderly fashion so that they 
discretize the entire flow field. Although any arbitrary mesh can be used, the one we 
found most practical is hexahedral cells orchestrated by a three-dimensional coordinate 
system for which the body is aligned with one of the three coordinate surfaces. Such 
an arrangement facilitates the enforcement of the solid-wall boundary conditions, A 
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variety of body-aligned coordinate topologies can be formulated, but we prefer the 
so-called 0-0 mapping (a generalization of the classical conical system) because i t  
focusses grid points along all edges of the wing. Figure 1 illustrates this type of mesh 
and shows our placement of the singular lines which are unavoidable in a three- 
dimensional body-aligned mapping. We work with the transfinite interpolation 
procedure to  construct our 0-0 type mesh based on the curvilinear coordinates 

where the surface X, = constant aligns with the wing. The non-orthogonal coordinates 
( X , , X J , X K )  define in physical space the edges of the mesh cells (figure l a ) ,  the 
integers I ,  J ,  K are the corresponding directions in the computational space, and in 
the physical space the unit vectors n,, n,, n K  are normal respectively to  the cell 
surfaces X,, X,, X ,  equal to constants. Complete details on the construction of such 
a mesh as well as a discussion of the relative economy of resolution afforded by the 
0-0 mapping is found in Eriksson (1982). 

For the finite-volume method no global coordinate transformation needs to be 
specified. I n  fact the only details about the mesh that we transmit to the method 
are the three Cartesian coordinates of the eight vertices of every cell in the mesh. 
With this information i t  is not even necessary, as it is for a grid-point method, to 
formulate the local curvilinear coordinate system ( X I ,  X,, X,) in order to calculate 
the metric coefficients of the coordinate transformation. Instead the equivalent of 
these terms can be determined strictly by the principles of geometry. For exampk, 
altogether ten metric quantities are needed - the three components of each of the 
three surface areas S,, S,, S, of a cell together with its volume Q. If the four vertices 
defining a surface are coplanar its area is given exactly by one half the cross product 
of its diagonal line segments S = x ld2, and this is a good approximation even if i t  
is non-planar. 

The volume Q is computed in the following way. Without restriction, a general 
hexahedron is composed of five tetrahedra (figure 2), each of whose volume is 
determined exactly by 

where the integer subscripts on T1236 refer to the four vertices that define the 
tetrahedron. The volume of the hexahedron is then the sum of the volumes of these 
five tetrahedra. 

Spatial Jinite-volume discretization 

Since ( 1 )  is valid for any arbitrary volume it  also holds locally for each individual 
cell i jk in the mesh, where the bounding surface aQi5, now consists of the family of 
the three coordinate surface S = {S,, S,, S,} that delineate the hexahedral mesh cell 
(figure 1). I n  order to solve this continuum equation we must evaluate the integrals 
by some discrete approximation which then characterizes the class of the cell method. 
Here we consider only a single-point evaluation per cell for the dependent variables 
q, so that by the mean-value theorem (1) becomes 
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FIGURE 1 (a+). For caption see facing page. 
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FIGURE 1 .  The (ro mesh topology wraps cells around all the edges of a large-aspect-ratio wing and 
offers good resolution near the wing. (a )  The hexahedral cells of the mesh are defined by their eight 
vertices expressed in Cartesian coordinates (z, y, 2). (6) Basic features of the M mesh: oval surfaces 
encircling all edges and two parabolic singular lines starting a t  the tip. ( c )  Vertical view of 
wing-surface discretization with a rounded leading corner a t  the tip. (d )  Two different views of the 
tip region of the wing-surface mesh. The parabolic singular point a t  the leading-edge/tip corner 
is clearly visible. ( e )  Cut-away 3-dimensional view of the (to mesh around the M6 wing shows the 
focusing of cells near the surface. 
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FIGURE 2.  The volume of a hexahedral cell is the sum of the 
five constituent tetrahedra: TIza6 + q867 + q685 + qad8. 

where qijk is now interpreted as a volumetric average located a t  the centre of the cell, 
and H(q).S is the corresponding flux evaluated a t  the surfaces S.  That q and H - S  
reside a t  different spatial positions is a central feature of the finite-volume concept. 
The three-dimensional undivided central-difference operator 

s$ijk = ( 6 1 + 6 J + F K ) W i j k  = ( $ ' i + + , j , k - $ i - & j , k )  

+(k'i,j++, k - $ i , j - ~ , k ) + ( $ ~ , j , k + + - $ i , j , k - ~ )  

expresses the net gain of flux into the cell and is fundamental to the conservation 
property and independent of any particular choice of spatial differencing. 

Since qijk is located in the centre of the cell but H(9) must be expressed a t  its 
surfaces, some form of local interpolation of the neighbouring discrete values q must 
be devised and a numerical quadrature of the surface integrals performed in order 
to carry out the discrete solution of ( 2 ) .  It is the particular type of interpolating 
function and quadrature that defines the specific spatial-difference scheme of the 
method. In  our case the simplest, and perhaps most natural, function is 

L H . S ] i j k  = [H(Cl19ijk)'SI+H(C1J9ijk)'Sj+H(CLKqijk)'SK1, (3a)  

where p is the averaging operator 

P I  @ijk = i!($i++,j, k + $ i - + , j ,  k ) .  

An alternative to  this, since each face of the cell i jk lies between two dependent 
variables, is to compute the flux separately for each of the two neighbouring 
dependent variables and then average the two results, i.e. 

[ H ' S ] i j k  = [ C L I H ( q i j k ) l ' S I + [ C L J H ( q i j k ) l  s J + [ p K  H ( 9 i j k ) l . S ~ .  ( 3 b )  
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If the flux function H were linear, alternatives (3a )  and (36)  would obviously be 
equivalent, but H i s  quadratic. We have tested both forms and found that in smooth 
regions of the flow the differences in the two results are imperceptible. They are larger 
a t  shock waves, however. We choose to work with ( 3 b )  because for the idealized case 
of one constant flow field ahead of and another behind a shock wave, and a cell face 
aligned to it,, only scheme (36)  provides the correct jump in q across the shock. 
Equation (2) together with ( 3 b )  leads to a spatial-difference operator completely 
centred in all three coordinate directions, which is second-order-accurate in space if 
the variation in mesh size is reasonably smooth. These three-point differences lead 
to a simple program structure requiring no logic to decide whether to skew the 
differencing to one side or the other, which makes it amenable to a large degree of 
computer vectorization. 

This finite-volume discretization bears some similarity to both the conventional 
finite-difference and finite-element discretizations. I ts  difference stencil is that of a 
finite-difference scheme, but it differs in that cell-averaged instead of point quantities 
are differenced, and as we shall see below this gives a significant distinction near a 
mesh singularity. Like the finite-element procedure, its formulation begins with the 
integral equation, and in fact we could present i t  in the context of a finite-element 
technique, but the resulting shape function is so peculiar that we think it warrants 
a presentation and name of its own. 
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Stability and accuracy at mesh siryularities 
Notice that even if the underlying mesh transformation is singular so that an edge 
of a cell contracts to a point, a surface collapses to a line or a point, or seven of its 
eight vertices become coplanar, this geometrical procedure still returns meaningful 
and accurate values for the areas and volume. The flux quantities can therefore be 
defined, and, since (2) is balanced in the interior of the cell where no coordinates are 
used, i t  remains finite even in the presence of these mesh singularities. And this is 
accomplished automatically without any special programming considerations. The 
same may not be true for the usual grid-point methods. Eriksson (1984) analysed the 
further question of whether mesh singularities destroy the spatial accuracy of 
finite-volume and finite-difference schemes or their stability as they step forward in 
time. He found that without any modification the finite-volume technique remains 
stable in the presence of a singularity, but its accuracy decreases to  somewhere 
between first and second order in space. Without alteration the finite-difference 
scheme is unstable even if the singularity is straddled. Stability can be restored, 
however, if a limiting form of the difference scheme is derived a t  the singular point 
and implemented in the computer code. 

Arti$cial-viscosity model 
The purely convective difference operator Fc(qij,) = - 6(H.S),,/Qij, in (2) suffers 
a number of drawbacks. It is well known, even for linear problems when the boundary 
conditions are unable to  prevent it, that centred-differences admit as a solution 
so-called sawtooth or plus-minus waves, i.e. waves with the shortest wavelength 
L - 2AX that the mesh can support. This just reflects the fact that the truncation 
error of these schemes is entirely dispersive and not dissipative. When the problem 
is nonlinear there arises an aliasing phenomenon whereby short waves interact with 
each other, vanish, and reappear again as distorted long waves. But these defects 
in general could be dealt with satisfactorily by digital filtering techniques if it  were 
not for further deficiencies in the differential Euler equations themselves. When 
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shocks are to be captured in a nonlinear flow field, the conservation equations admit 
non-unique weak solutions, and an entropy condition has to be supplied in order to 
obtain the physically correct weak solution (MacCormack & Yaullay 1974). A 
standard way to invoke an entropy condition is to model the true physical process 
inside a shock by the addition of a small dissipation term to the convective differences. 
But even if the flow is smooth the fundamental question of the existence and 
uniqueness of a steady-state solution to these equations is not fully answered. In  
nonlinear transport there is a mechanism by which energy migrates from long- 
wavelength motion to progressively shorter and shorter scales until in reality it is 
removed from the flow by molecular viscosity. The differential Euler equations 
possess no such viscosity, so that this energy probably just piles up in the small scales. 
In the discrete representation this energy would migrate to the smallest scale 
resolvable on the mesh and then return transformed to large-scale motion via aliasing, 
which is clearly non-physical and would appear to make a steady state unattainable 
(Lomax 1982). Within the context of the inviscid-flow equations, our best recourse 
against all of these deficiencies, albeit crude, is to attenuate waves more and more 
severely as their wavelength decreases, so that none migrate out and alias back, but 
in such a way as not to alter completely the inviscid character of the solution. This 
is the so-called artificial-viscosity model. The idea of course is to mimic the short-wave 
dissipation by the real physical viscosity, and its justification is simply that in inviscid 
flow short-wave motion is of such low amplitude that whether removed or not it has 
no important effect on the overall flow character. I n  actual flow simulations this model 
is judged with a view to the crispness of shock profiles and the thinness of vortex 
sheets in weak solutions, and the amount of entropy produced or equivalently the 
variation in total pressure through regions of smooth flow. 

We prefer to introduce dissipation into our system a t  the same time level as the 
transport process by adding to  it damping terms whose magnitude lies in or below 
the range of the truncation error of the discrete approximation. Our total difference 
operator F(q) therefore consists of: (i) the convective part Fc(9) that results from 
discretizing the Euler equations in space by the centred finite-volume scheme, and 
(ii) the dissipative part FD(q). The semidiscrete approximation ( 2 )  can then be written 

The total discrete dissipative operator FD(qijk) includes its own artificial boundary 
conditions, described below, and comprises both linear and nonlinear terms according 
to FD(qij,) = g(gij,) + Dq,,, where D is a constant matrix. The nonlinear expression 
g(qiik) is designed to provide dissipation a t  discontinuities, whereas the linear one 
is formulated to suppress spurious solutions (sawtooth waves) and to control the 
migration of energy from large to subgrid scales. 

Nonlinear artiJicia1-viscosity term 

expressed by 
For all cells in the interior of the domain the nonlinear artificial viscosity is 

where x is a constant in the range 0 . 1 ,  and s I ,  sJ and sK are coefficients that depend 
on the solution field through the pressure p according to sIcc Ii3ipijk(, sJ oc (6:pijr( 
and sK K 16&pt,,(. These coefficients are normalized by their maximum value so that 
their magnitudes lie between 0 and 1 .  Their purpose is to sense non-smooth flow and 
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increase the filtering of large gradients so that in effect an entropy condition is 
enacted. This much is standard and is used in many methods. However, a t  cells 
adjacent to  boundaries outside of which qijk cannot be defined naturally, (5) must 
be modified by what we call artificial boundary conditions, and here enters a degree 
of arbitrariness that causes the results of one method to differ markedly from another. 
We believe that the quadratic form qT Hq,  where Hq = g(q) for fixed s I ,  sJ and sK ,  
provides a useful guideline for the appropriate conditions a t  such boundaries. 

The purpose of the total dissipative operator is to drain off energy as time increases. 
How this is accomplished can be shown best by considering this locally linearized 
dissipative term Hg separate from the convective term. I n  the absence of F,, system 
(4) behaves as dq/dt = Hq.  Let us define the ‘energy’ quantity q2 = qTq of the 
discrete dependent variables. Since the time derivative of this energy should be 
negative, i.e. dq2/dt = 2qT(dq/dt) < 0, we determine the condition qTHq < 0 for 
the quadratic form. Now a t  boundaries if, as an artificial boundary condition, we 
simply set the corresponding sensors s I ,  s J ,  sK in ( 5 )  to  zero, we find that the 
quadratic form 

N I  N J  N K  

i-1 j=1 k-1 
QTHQ = C E C QijkHQijk 

NI-1  N J  N K  

N I  N J - l  N K  

N I  N J  NK-1  

i = l j - l  k-1 
- x C  SKi,j,k+;(qi,j,k+l -9. a , j , k  . )* 

is always negative, and hence energy dissipates even in the boundary cells. We 
therefore believe this to be a good choice of artificial boundary condition for the 
nonlinear dissipation. 

Linear arti$cial-viscosity term 

Our model for linear artificial viscosity uses the fourth-difference operator 

Dqtjk = - Y(6?+6$+6$)qijk (6) 

at all interior cells where Y is a constant in the range 0-0.02. But at boundaries we 
also must alter this expression by some suitable boundary procedure, and we seek 
to do so in a way that guarantees positive dissipation in all cells. Guided again by 
its quadratic form, we use no data outside the computational domain, but instead 
incorporate non-centred differences for the boundary cells together with scheme (6) 
at the interior ones in order to obtain the total discrete linear dissipative operator 
D with the property 

N I  N J  N K  

i-1 j - 1  k=l  
QT Dq = C C C qijrDqijk 

N I - l  N J  N K  

- Y i-2 j = l  C k-1 z (Qi+l,i,k-2qi,j,I,+qi-l,j,*)2 

N I  N J - 1  N K  

- - Y  C C (Qi,j+l,k-2qi,j,k+Qi,j-1,k)2 

--y C x (Qi,j,k+l-2Qi,j,k+Qi,;i,k-1)2’ 

i - 1  j -2  k-1 

N I  N J  NK-1  

i -13-1 k-2 
(7) 
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which automatically ensures that the dissipation is greater than or equal to zero (for 
Y > 0). The attractive feature of this artificial viscosity model, easily seen in (7) ,  is 
that, if qijk is bilinear in i , j  and k ,  the total operator 1) acting on qijk always returns 
zero, even a t  the boundaries. Compare this to the secoild-difference operator H that 
returns zero only if qijk is a constant. The details of the construction of D will be 
presented in a forthcoming paper. 

Boundary conditions 
A particular steady flow field is determined by the conditions imposed upon it at 

its boundaries, and usually the stability and accuracy of the discrete conditions are 
more difficult to analyse than the difference scheme itself. This means that in general 
the theory of boundary conditions for numerical computations is more empirical. In  
our case of a 0-0 mesh conforming to a winglbody combination, boundary conditions 
are enforced at the six outer surfaces of the computational space (figure 3). There 
are three distinct types: flow into or out of the far field, periodic conditions across 
coordinate cuts, and conditions on solid walls. 

InflowIoutjlow boundary 

With a 0 mesh, flow in the far field enters and leaves through the outermost J-surface. 
This is an artificial boundary in the sense that the actual flow in the physical domain 
is open, whereas the computational space must for practical reasons be closed. The 
numerical conditions, therefore, ideally should allow phenomena generated in the 
computational domain to pass through the boundary without undergoing significant 
distortion and without influencing the interior solution. I n  this way the maximum 
amount of transient energy escapes from the field, and the time-dependent solution 
can converge to the steady state. Engqvist & Majda (1977) present a mathematical 
theory for the practical application of local absorbing boundary conditions at arti- 
ficial boundaries. 

One of the six faces of cell i ,  JL ,  k located in the mesh layer JL farthest from 
the body is coincident with the outer boundary; call the surface area of that  face 
SJL.  The edges of the cell define the local curvilinear coordinate system (XI, X,, X K ) ,  
where the positive X, direction points from the outer boundary surface into the 
domain, the other two being tangent to  the surface. I n  this system the differential 
conservation equations equivalent to  ( 1 )  are 

where 

are the Jacobian matrices of the flux function. The matrix A works out to be 

0 a P s 
C L C 2 - U ~ + K C L v 2  a ( l - K ) U +  u PU-KCLV €U - KCLW 

PCa - V u +  K P  vz av  - KPU p ( l - K ) V f u  EV-KBW 

€2 - w rJ+ KC V 2  aW - KEU PW - K€V 

u = CLu+pv+sw; vz = v. v, 

s(l - K )  W +  u 
where a = SJL*e,;  P = SJL-e,;  E = SJL-e, ,  

and c is the local speed of sound. 
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b Periodic 

FIGURE 3. Types of boundary conditions on the six outer surfaces of the 
computational space IJK resulting from the 0-0 grid mapping. 

The First Approximation in the hierarchical theory of Engqvist & Majda amounts 
to specifying the characteristic variables of the corresponding one-dimensional 
problem which is well posed and maximally dissipative. Since we work only with their 
First Approximation, i t  is easier to grasp the idea if we present our boundary 
condition in a heuristic development based directly on the characteristic variables 
instead of the formal theory. The presentation for our 4 x 4 system mirrors the one 
given by Gottlieb & Gustafsson (1976) for the 3 x 3  system, but is more general 
because of our non-orthogonal coordinates. 

We seek the characteristic variables of the corresponding one-dimensional problem 
local to  a given cell 

(8) 

which means that we focus on a particular set of charact,eristic planes, those whose 
normals point along X, and whose slopes in time are the eigenvalues A of A. Solving 
det (A - A / )  = 0, we find 

A, = U ,  A, = U ,  A, = U-a,, A, = U-a_,  

where a* = i K U &  [ tK2U2+C2(012+p2+€ .2 ) ] : .  

The left and right eigenvectors associated with these four eigenvalues make up the 
rows and columns of the transformtttion matrices T-l and T respectively that 
diagonalize (8) : 

z + + A - = O ,  a a+ 
ax, 
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where 

After the intermediate variables 
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+ = T-lg, A = T-'AT = diag(A,, A,, A,, h4) 

- 
O = pu+av,  B = --ev+pw, w = GU-uw, 

t = a2+/?2+€2, &, = KU-a,, - R ,  = e&,-&k), P ,  - = KW"W++€c2 - 

have been defined for the sake of simplification, we find 

K O  0 R+ R- 
KV U -  P(K V2 + c2) P U R ,  + aP+ uR-+aP- 

- K u U + U ( K V ~ + C ~ )  @ vR+ + PP+ vR-+PP- 

0 0 wR, - K ( ~ U  + Pv) a, wR_ - K(UU + Pv) a- 
- (a2 + p) c2 - (a2+/32) C 2  

dl 

+ c2(sU- tw)]/d, 

R, - 
d3 

[ K W (  U2 - t V z )  

The factors d,, d,, d, and d, in the denominators are normalizing coefficients so that 
T-lT equals the unit matrix. 

For the one-dimensional case i t  is well known that the number of conditions to be 
imposed in a cell at the outer boundary should equal the number of characteristic 
directions that enter the computational domain. Four typical cases are depicted in 
figure 4. With subsonic inflow our implementation is to set the three ingoing 
characteristic variables #(I), q5(2) and q5(3) to their free-stream values, linearly 
extrapolate the fourth q5(4) from the computational field, and then solve for the 
original unknowns q = T+. At outflow i t  is that  is given the values of undisturbed 
flow, and q5(l), q5@) and #(4) are extrapolated from the computational field. 

Coordinate cuts 

Conditions on these boundaries are the least troublesome since a t  a cut the physical 
space folds on to  itself and the condition on the flow at the computational boundary 
is periodicity. We remark that in the 0-0 topology these boundaries occur conveniently 
a t  the trailing edge and tip of the wing (figure 3). 

Solid walls 
For inviscid flow the imposition of the boundary condition on the surface of the 
aerodynamic vehicles of interest in our work possesses two different but related 
aspects. The first is the usual one that no flow is allowed through a solid wall, and 
the second is the so-called Kutta condition, which dictates that  the flow separates 
from a sharp trailing edge and can be a source of vorticity. 
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FIGURE 4. The number of boundary conditions a t  inflow and outflow 
based on the ingoing characteristic variables $m, m = 1, ..., 4 (cf. (8)). 

Zero j u z  transport 

The physical condition of zero transport V-n = 0 applies to two surfaces, the wing 
J = 1 and the fuselage which merges together with the wall of symmetry K = 1 (see 
figure 3).  Since the computational cells are aligned to both these surfaces, the physical 
condition reduces the dependence of H(q),,dy to H(p)body, and we are forced to 
determine a value for p on the vehicle surface by numerical means, usually by 
differencing some auxiliary equation in order to relate values in the field to those on 
the surface. Our procedure to obtain an estimate of pbody from the interior solution 
has been described before in the general case (Rizzi 1978). It is valid a t  both the wing 
and the body-plus-wall surfaces, and we summarize i t  briefly. The basis of our 
auxiliary relation for pbody begins with the streamline differentiation of the physical 
condition @/at+ Vsgrad) (Van) = 0, where n is the unit vector normal to  either the 
wing or fuselage. This expression, when combined with the inner product of the 
quasilinear momentum equation and n and rearranged, becomes, for a stationary 

where 

pV*(V*grad)n = n-gradp, (9) 

S, a S, a S, a grad 3 ---+--+---- 
1’11 ax, Is,[ ax, Is,[ ax, 

and relates p, V and the geometry of the surface to the normal derivative of p .  When 
i t  is differenced to formally first-order accuracy the pressure on the surfaces is 
deduced from the interior values. 

Trailing-edge vorticity generation 

Because a velocity potential satisfies curl V = 0 identically, the exact, solution of 
potential flow past a wing as well as any finite-difference approximation to  i t  cannot 
admit distributed rorticity in the field. For the same reason numerical solutions to 
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the potential equation, no matter how crude, must be loss-free (isentropic), i.e. the 
flow can undergo only reversible processes. Numerical methods based on a potential 
therefore introduce a vortex sheet (usually rigid and planar) in the flow field in order 
to model the vorticity generated by the wing so that non-zero values for lift and 
induced drag can be realized. However, a t  a workshop (Rizzi 1981) on transonic flow 
those methods which solved the Euler equations for flow past an airfoil section but 
which did not implement any explicit procedure or Kutta condition to  introduce 
vorticity still obtained accurate solutions with the correct lift. It was argued that the 
Euler equations, unlike the potential equation, admit vorticity and vortex sheets as 
genuine and weak solutions respectively, so that,  if somehow introduced into the flow, 
vortex sheets can be ‘captured’ in the same sense that shock waves can be captured, 
and a Kutta condition need not be enforced explicitly. Since then, further examples 
of computed three-dimensional flow past a finite wing have been reported for which 
a Kutta condition was not explicitly imposed but the correct lift was still obtained. 

However, the question of how in the absence of a Kutta condition the separating 
vortex sheet is initially introduced into the flow field remains inconclusively 
answered. The creation of vorticity is usually associated with irreversible flow 
processes. I n  the context of the differential Euler equations such processes occur only 
across shock waves. And our first explanation for the source of vorticity focused on 
an unsteady mechanism in the Euler equations, with the nature of an unsteady 
Prandtl-Meyer expansion, which, if the flow were to remain attached around a sharp 
trailing edge, would generate a shock and entropy that ultimately force the 
separation point to the trailing edge (Rizzi 1982). But additional losses can enter 
a discrete solution to the Euler equations through numerical error, depending upon 
the mesh size, long before gradients in the flow have steepened into something we 
would call a shock. They can occur even for expansion gradients. A good example 
of the latter is the one or two per cent loss in total pressure a t  the leadin., edge of 
an  airfoil that  is commonly observed in numerical solutions to  the Euler hquations 
for transonic flow. Unlike the potential solution, which is a priori loss-free, only 
accurate solutions to the Euler equations conserve entropy along streamlines of 
smooth flow. But this does not necessarily mean that our postulated shock mechanism 
must be modelled accurately to generate vorticity at the trailing edge. The most 
convincing argument why i t  need not be has been recently advanced by E. H .  Hirschel 
(1984 private communication). I n  studying the behaviour of potential flow past a thin 
ellipsoid at incidence, Hirschel & Fornasier (1984) point out that ,  right after a 
streamline divides into upper- and lower-surface components a t  the leading edge, 
substantial shear develops between them (see figure 2 of Hirschel & Fornasier 1984). 
For potential flow this shear of course cancels out again by the reverse process in a 
region near the trailing edge where the two components reunite. As its curvature 
increases and the trailing edge becomes sharper, this region shrinks. But in a 
numerical solution of the Euler equations, which must approximate this process 
accurately in order to remain loss-free, this shrinkingly smaller region eventually 
disappears from the resolution of the usual mesh. And the computed flow then leaves 
the trailing edge in shear. Since this shear originates from the forward portion of the 
wing, where we assume that the mesh does resolve the inviscid flow accurately, we 
can expect to obtain a realistic level of circulation in the solution. But, if the trailing 
edge is not sufficiently sharp, the numerical solution may begin to approximate 
potential flow more accurately at the trailing edge and contain less circulation. We 
leave this discussion for now, however sketchy it may be, but it can and should be 
tested by numerical experiments in order to explore under what conditions a solution 
to the Euler equations can be forced to depart from a potential solution. 



Computation of jow urotcnd wings h s e d  on the Euler equations 59 

4. Time integration and convergence to steady state 
With the above boundary conditions and artificial-viscosity model now included 

in F = F,+F,, our complete difference operator, the problem ( 2 )  we want to solve 
becomes, with spatial indices i j k  suppressed, 

- dq = F(q) .  
dt 

For a given mesh size one can look upon this as a large system of ordinary 
differential equations, the so-called semidiscrete representation. Ultimately of course 
the problem must be solved in discrete time, but it is instructive to  look a t  this form 
(10) first. Our goal is to integrate (10) forward in time until a steady state is reached, 
but without concern for time accuracy. The central issue to be addressed is the 
stability of the integration, not in the strict formal sense but in the more limited one 
of convergence to steady state, that  is to say we do not attempt to establish a uniform 
stability bound on the time integration in the limit of finer and finer meshes. Instead, 
what we ask of any candidate used to march (10) to a steady state q *  for a given 
grid are two criteria: that after many time steps the transients dq*/dt become 
vanishingly small, and that q *  satisfy the steady discrete operator F(g*) = 0 
independently of the time step size. 

Equation (10) is nonlinear, and it is possible to study these questions only after 
the complete operator F has been locally linearized. Think of q as some transient 
perturbation superposed upon the steady state q*. The linearization of (10) then leads 
to a homogeneous equation for the transients, 

and q decays if all of the eigenvalues h of A lie to the left of the imaginary axis. In  
general the order of A is large, and we cannot compute its entire eigenvalue spectrum. 
It is possible, however, to get a reasonable picture of the spectrum in the light of three 
different approximations. 

The first is the usual Neumann analysis, and tells us something about the 
character of the convective difference. Assume for the moment that F is linear, 
purely convective (the artificial viscosity coefficients x and Y are set to zero), 
and changes occur in only one direction X which is free of boundaries so that 
F = A = -a(qj+l-qj-l)/2AX. Since this analysis is only local, the mesh can be 
considered uniform, and the finite-volume discretization then reverts to the standard 
central-difference expression. If we ask what happens to a Fourier mode q = qei@ 
of wavelength L($ = 27cX/L) obeying (1  l ) ,  we obtain dq/dt = - [i(a sin $)/AX] q, 
so that under these assumptions the Fourier eigenvalues h = -i(a sin#)/AX are 
purely imaginary, and continuous-time transients will oscillate indefinitely, indicating 
that the centred difference is non-dissipative. But, on integrating this equation by the 
following three-stage two-step scheme in parameter B = $ or 1, 

over the discrete time step from qn to qn+l, we find that the solution 

{I+AtA+8(AtA)2+82(AtA)3}qn = Cqn (13) qn+l = 

3 F L M  148 
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FIGURE 5.  Contours of constant amplitude of the amplification factor (u( of scheme (12).  

decays if the magnitude of the maximum eigenvalue 

CT = 1 +z+8z2+f?z3, z = AtA,  (14) 
of C is less than one, the well-known CFL condition that determines the size of the 
time step At. Contour levels of ( C T ~  in intervals of 0.1 are plotted versus z in the complex 
plane of figure 5 .  Since all h are imaginary we see that the CFL condition is 
encountered by the mode ( L  = 4AX) associated with the eigenvalue of largest 
modulus, and is satisfied if At lAlmax is less than the CFL number, 2 for f? = $ and 1.2 
for 8 = 1. But, except for very long waves or extremely short ones ( L  NN 2 A X ) ,  all 
modes are temporally damped by the time integration, and to  a greater degree as 
0 goes from i to 1. Compare this to  the corresponding plot (figure 6) for the fourth-order 
time-accurate Runge-Kutta scheme, which offers significantly less temporal damping 
but a larger stability bound (CFL = 2.8). 

Under the same assumptions, but now in three dimensions, a similar Fourier 
analysis of scheme (12) indicates, and it is confirmed by actual numerical tests, that 
the stability limit on the step size is At < CFL minijk (At , ) ,  where 

(15) 
'tjk 4 = 1 

Z K ( & I  + QJ + & K )  + [$c"(&: + Q; + Q&) + C 2 ( S ?  + s; + #&)I9 ' 

with 

&I = IV.SII, &J = IV.SJl, &K = )V.S,I, c2 = ~ K ( ~ ~ , - u ~ - z P - w ~ ) .  

The preceding Fourier analysis tells us a good deal about the character of A under 
the simplifying assumptions of no boundaries and zero artificial viscosity, but we 
would like to know how i t  changes as these assumptions are gradually removed. 
Consider boundaries first, since the release of energy through them is known to play 
a crucial role in the convergence to  steady state. Lomax, Pulliam & Jespersen (1981) 
have taken this simplified linear one-dimensional example, added boundary conditions 
a t  each end, and obtained the discrete operator A. Since in one dimension the order 
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FIGURE 6. Contours of constant amplitude of the amplification 
factor 1 r ~ 1  of the fourth-order Runge-Kutta scheme. 

of A is low, they were able to calculate the entire eigenvalue spectrum of A, and found 
that the effect of introducing boundary conditions is to shift the eigenvalues a small 
distance horizontally to the left of the imaginary axis. The boundary conditions 
therefore provide a very important damping of transients. 

For the third step of our study we consider a much more realistic problem, the 
two-dimensional counterpart of (1 1) where the complete discrete operator F includes 
the boundary conditions and artificial viscosity described above and is formed on a 
non-uniform O-type mesh for transonic flow around an airfoil. The matrix A,  the local 
linearization of F around the state obtained by scheme (12) after 15 steps from the 
free stream, is too large now to determine the full eigenvalue spectrum exactly, but 
by a Krylov subspace method we have been able to compute a signature of the 
spectrum (Eriksson & Rizzi 1984). Figure 7 (a )  presents the approximate spectrum 
that we computed for A and confirms the expected shift to the left by the boundary 
conditions and artificial viscosity. But what is disturbing is the eigenvalue very close 
to the origin, not only because it is damped very slightly but because i t  indicates that 
A is poorly conditioned. This situation is a direct result of the non-uniformity of the 
mesh, and can be alleviated by the well-known technique of advancing the solution 
with the local At, instead of the minimum time step. To demonstrate its effect we 
scale the matrix A by multiplying its lth row by At, and present the resulting 
spectrum in figure 7 ( b ) .  Notice that the smallest-modulus eigenvalue now is also 
shifted to the left, the overall condition is improved, and the discrete-time solution 
of (12) can be expected to decay to a steady state. In  Eriksson & Rizzi (1984) we 
further show that without artificial viscosity some eigenvalues move to the right of 
the imaginary axis and the computation fails to converge. Artificial viscosity is an 
essential feature of the numerical model for inviscid transonic flow. 

After the flow has been marched forward by scheme (12) to a state where all time 

3-2 
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FIGURE 7. Effect of local time-step scaling on spectrum of linearized system. 32 x 7 grid around 
NACA 0012 airfoil, M ,  = 0.8, a = O", nonlinear dissipation added. System linearized after 15 time 
steps with free-stream initial conditions. (a) Unscaled system. (b )  Scaled system. 

perturbations q cease, the question that remains is: does this state q = qn+l = qn 
given by the integration scheme (12) satisfy the (linearized) steady operator Aq = 0 
identically ? If all time variations are absent, the relation 

q = { / + A t A  +6'(AtA)2+B2(AtA)3} q 

follows from (13), and hence At[ /+  6'At A +B2(AtA)2]  Aq = 0 holds. The answer then 
is yes, because the characteristic polynomial 1 + Bz + B2z2 of the bracketed term cannot 
be zero for any z = At h within the scheme's stability region, since substituting its 
roots z = ( - 1 & i2/3)/26' in (14) yields IT = 1 ,  which is just outside the stability bound. 
And we see that the solution to the discrete steady operator does not depend upon 
the time step used to reach it. This property of scheme (12) relies heavily on the fact 
that  the same discrete operator is used in each of its stages. I n  schemes where this 
is not the case, for example the MacCormack scheme, the commutativity of the 
skewed forward and backward differences has to be considered, and the question 
becomes much more difficult to answer. 

5. Computed example: M6 wing ( M ,  = 0.84,  a = 3.06) 
We choose to present results computed for this wing of intermediate aspect ratio 

to demonstrate the overall applicability of the method, not only because i t  has become 
a standard test example of AGARD for computer-program evaluation, but primarily 
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FIGURE 8. General features of the flow around a Iarge-aupect-ratio wing. Inboard it is irrotational 
and highly two-dimensional. A free shear layer separates from the tip, interacts with the vortex 
sheet behind the trailing edge, and rolls up into a wake vortex. 

because experiments have revealed the presence of a significant vortex above the wing 
tip. The rotational phenomenon we expect to see in our inviscid model is a captured 
non-uniform vortex sheet shed from the trailing edge. In order to satisfy the 
solenoidal requirement on vorticity , the corresponding vortex bound in the wing must 
exit from the wing tip and turn downstream. The vortex sheet then interacts with 
this tip vortex by rolling up and feeding its strength. The situation is pictured 
schematically in figure 8. Inboard over most of the span the flow is expected to be 
irrotational and nearly two-dimensional. This region of the flow has been simulated 
many times before and very accurately by potential-flow methods. Our interest here 
is to focus on the tip region in order to determine whether or not the Euler-equation 
model is able to capture the inviscid rotational flow we expect there with a t  least 
some degree of realism. We do not, however, compare our solution computed for this 
case with results from other Euler-equation methods, primarily because a critical 
comparison would turn into a full-length paper of its own. Readers interested in a 
thorough and up-to-date comparison of results from the currently best-known 
methods, ours included, are referred to the forthcoming report of AGARD Working 
Group 07 (1 984). 

Containing a total of 96 x 20 x 20 cells, our grid is a 0 type that wraps smoothly 
around the tip with a cell density sufficient to resolve the details of the flow there 
(refer to  figure 1 for plots of the mesh). The solution we present is computed with 
the time-integration parameter 0 = and no Kutta condition or special procedure 
applied at either the sharp trailing edge or the smooth tip. I n  order to grasp the 
nature of the results, we must probe the computed solution by means of a series of 
contour maps, not only on the wing surface itself but out in the field as well. An overall 
impression of the pressure field around the wing from root to  tip is illustrated in figure 
9 by isobar maps in 4 selected chordwise grid surfaces (non-planar) that  depict the 
familiar expansion/compression phenomenon near the leading and trailing edge as 
well as the formation of the lamda shock. The dotted line shows the sonic surface. 
These features are brought out even more distinctly by the isobar and Mach number 
contours on the upper wing surface (figure lo), together with the usual sectional 
chordwise plots of C, in figure 11. At the tip figure 10 further indicates by the 
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G mesh surfaces 

FIGURE 9. Isobar maps in 4 nonplanar chordwise grid surfaces depicting the pressure field around 
the M6 wing. The dotted line is the sonic surface. Contour interval 0.05. &Im = 0.84, a = 3.06, 
C ,  = 0.286, C, = 0.0116. 

coalescence of contour lines the stem of the lamda shock just aft of the leading edge. 
But what is most striking is the running together of contour lines a t  the trailing edge 
of the tip. Although novel for this type of wing, sectional spanwise plots of C, are 
the best way to view this detail. Figure 12 contains three such sections (fore, mid 
and aft chord) together with the experimental values plotted in this uncommon 
manner. Inboard, reflecting the two-dimensional character of the flow, the pressure 
varies only slowly with span until the tip is approached. There locally in this 
intriguing region we see, and i t  is confirmed by the measurements, a small amount 
of negative lift being produced in section x/c  = 0.28, which then changes to a positive 
contribution to lift in the next two sections x/c = 0.68 and 0.87. Similar to  the suction 
peaks under the vortex generated by a delta wing, the computed pressure distribution 
a t  the tip leads one to suspect rotational flow. A probe of the vorticity field by 4 
contour maps (figure 13) of the vorticity magnitude 101 = JcurlVI in the field around 
the wing tip confirms the existence of rotational flow local to  that  region. The trace 
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FIGURE 10. Contour maps of the solution computed around the M6 wing. (a )  Lines of constant 
pressure 1 - p / p t ,  normalized by the freestream total pressure p t ,  on the upper surface of the M6 
wing. Percent stations indicate the location of the 3 chordwise and spanwise sectional plots 
displayed in figures 11 and 12. M ,  = 0.84, a = 3.06. Contour interval 0.025. ( b )  Sectional graph 
and isobar map of 1 - p / p t m  in the field around the wing in the 47 yo span station. (c) Lines of 
constant Mach number on the upper surface. ( d )  Sectional graph and isobar map of Mach number 
in the field around the wing in the 47 "A span station. 
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sections of the M6 wing (see figure 10). M ,  = 0.84, a = 3.06. 
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FIGURE 12. Comparison of measured and computed P p  in three spanwisp sections (constant percent 

local chord) of the Mfi wing (see figure 10). iWm = 0.84, CL = 3.06. 

(figure 14) of'these contours on the upper surface of the wing shows more clearly that 
the greatest amount and largest magnitude of vortirity is found a t  the trailing-tip 
corner, although there is a small amount along most of the leading as well as the 
trailing edge, the former produced, we suspect, by the leading-edge shock where the 
Mach number is greatest (over 1.4), and the latter probably diffused upstream from 
the trailing vortex sheet. The velocity field around the tip, given by vectors of the 
computed v and w velocity components (in figure 14), substantiates even more 
concretely the flow behaviour. In the upstream part of the tip region we see beyond 
doubt that the flow is attached, whereas further downstream it separates from the 
surface, creating a rotational flow above the upper surface of the wing. This inviscid 
separation phenomenon a t  the tip is, we believe, the emergence into the flow of the 
bound vortex, which in turn is the kinematic consequence of the vortex sheet shed 
along the entire trailing edge. Also shown in figure 14 is a velocity-vector plot of the 
transverse flow in a wake section that clearly shows t8hc position of the tip vortex 
and the (smeared) vortex sheet emanating from the trailing edge. For H reference 
length, the trailing edge is projected on to  this section and indicated by thc solid line. 
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FIGURE 13. Lines of constant vorticity magnitude If21 in 4 grid surfaces around the wing tip show 
that vorticity at these surfaces does not extend very far out into the field. The maximum value, 
normalized to one, occurs a t  the upper-surface tip trailing edge. Contour interval = 0.001. 

We further point out that  the centre ofthe vortex sheet seems to be positioned slightly 
above the wing plane and that the centre of the tip vortex is displaced inboard. These 
are typical effects, qualitatively correct, and often observed in experiments as well 
as in the computed results of vortex-lattice methods with wake-vortex relaxation. 

The dynamics of the computed wake are worth exploring further. The behaviour 
of the trailing vortex is shown in figure 15 by 4 contour maps of lsZl in surfaces that 
cut spanwise through the wake, one just 2% of the root chord behind the trailing 
edge and the others further downstream. I n  the first we see a small but clearly 
developed tip vortex and a rather strong vortex sheet spanning the trailing edge (a 
portion of the map is cut away to reveal the trailing edge for a position reference). 
As it moves downstream the vortex grows in size, being fed by the decrease in 
vorticity across the trailing-edge sheet. Also, as already suggested by the velocity- 
vector plot, the vortex sheet rises above the wing plane and the tip vortex drifts 
inboard. At the 150 % station behind the trailing edge i t  is fully developed. Such wake 
phenomena are a good test of the numerical method. We remark that our artificial- 
viscosity model does not unduly smear out the vortex sheet at the trailing edge. 
Although probably diffused on the rapidly expanding mesh, the vorticity contour is 
not a t  all distorted a t  the 450% station, which is the station nearest to the 
downstream boundary, and an indication that our non-reflecting far-field boundary 
conditions are able to  handle even this case of a vortex leaving the field. 

The free-stream flow is used as the initial conditions for the computation, which 
begins impulsively first on a coarse 0-0 grid of 48 x 10 x 10 cells and then continues 
to the second and final (fine) grid of 96 x 20 x 20 cells. After 800 iterations the coarse 
field is interpolated to the fine grid and advanced 200 iterations. The convergence 
history and the evolution of lift and drag for the entire computation is given in figure 
16 by plots of the logarithm of the residual (defined as pn+'-pn) ,  the number of 
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FIQURE 14. Lines of constant vorticity magnitude 1521 on the upper wing surface. The maximum 
value, normalized to one, occurs a t  the upper surface tip trailing edge. Also drawn are vectors of 
the computed v-w velocity components in two spanwise tip sections and one wake section to 
confirm the development of rotational flow. 

supersonic points in the field, and the aerodynamic coefficients C, and C, all versus 
the number of time cycles and CPU time taken on the CYBER 205. The coarse-grid 
computation begins with the free-stream field, and after 800 cycles and 98 CPU 
seconds the residual is reduced by over 3 orders of magnitude, and the lift and drag 
is within about 10 % of their final values in the fine grid (C, = 0.286 and C, = Oi0116). 
The rate of convergence in the fine mesh is slower, the residual (normalized to one 
at the start) is reduced by less than two orders of magnitude to  an absolute level of 
less than lop4, and the computing time is longer. But these are acceptable because 
the main function of the fine-mesh computation is just to  improve upon the local 
accuracy of the coarse-mesh solution, which is reasonably correct in the large. The 
machine carried out this computation a t  an average rate of 57 million floating-point 
operations per second (m flops) sustained over the entire computation. 
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FIGURE 15. The wake region behind the M6 wing revealed by constant vorticity-magnitude contours 
plotted in 4 spanwise sections at  distances in percent root chord behind the trailing edge. M ,  = 0.84, 
a = 3.06. 

6. Concluding remarks 
A large number of details enter in the design of a numerical procedure to simulate 

transonic flow. The most important ones have been touched upon here - mesh 
topology, coordinate singularities, flux conservation, boundary conditions, artificial 
viscosity, time-integration schemes, and ways to  deal with an ill-conditioned system 
of equations. But perhaps the most difficult of all is the question of modelling. We 
want, after all, to simulate real flows. The Euler equations per se are only an 
approximation to reality, but by modelling techniques we can hope to make them 
a better one. In order to do so, the artificial-viscosity models will have to be improved, 
and we shall have to reach a quantitative understanding of the way the vortex sheet 
develops a t  the trailing edge. 

What we have not addressed a t  all here is how the details of our numerical 
procedure are translated into an executable program intelligible to a computing 
machine. This consideration is taken up in Rizzi (1983), which spells out in detail how 
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to code our numerical procedure for efficient execution on the CYBER 205 vector 
computer. The software itself, which we call WINGAS,? is segmented along its 
functional lines of mesh generation as the preprocessor, the flow solver described here 
as the central processor, and the graphical surveying of results the post-processor 
(Rizzi & Eriksson 1984). 

The results we have presented for flow around the M6 wing, especially those a t  the 

t Readers interested in obtaining a copy of WINGA2 are invited to write to the authors for 
details. 
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tip, demonstrate the type of rotational flow field that can be simulated with a t  least 
qualitative realism by the Euler equations, and they justify the computational effort 
to obtain them. We do not believe this to be a fortuitous case. But we do seriously 
doubt that  the same quality of results we obtained a t  the wing tip can be achieved 
without the resolving power of a 0-Q or C-0 mesh encircling a smooth rounded tip. 
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